
J. Fluid Mech. (2009), vol. 629, pp. 25–39. c© 2009 Cambridge University Press

doi:10.1017/S002211200900648X Printed in the United Kingdom

25

Anisotropic clustering of inertial particles
in homogeneous shear flow

P. GUALTIERI†, F. P ICANO AND C. M. CASCIOLA
Dipartimento di Meccanica e Aeronautica, Università di Roma La Sapienza
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Recently, clustering of inertial particles in turbulence has been thoroughly analysed for
statistically homogeneous isotropic flows. Phenomenologically, spatial homogeneity
of particle configurations is broken by the advection of a range of eddies determined
by the Stokes relaxation time of the particles. This in turn results in a multi-scale
distribution of local particle concentration and voids. Much less is known concerning
anisotropic flows. Here, by addressing direct numerical simulations (DNS) of a
statistically steady particle-laden homogeneous shear flow, we provide evidence that
the mean shear preferentially orients particle patterns. By imprinting anisotropy
on large-scale velocity fluctuations, the shear indirectly affects the geometry of the
clusters. Quantitative evaluation is provided by a purposely designed tool, the angular
distribution function (ADF) of particle pairs, which allows to address the anisotropy
content of particle aggregates on a scale-by-scale basis. The data provide evidence that,
depending on the Stokes relaxation time of the particles, anisotropic clustering may
occur even in the range of scales in which the carrier phase velocity field is already
recovering isotropy. The strength of the singularity in the anisotropic component of
the ADF quantifies the level of fine-scale anisotropy, which may even reach values of
more than 30 % direction-dependent variation in the probability to find two closeby
particles at viscous-scale separation.

1. Introduction
Transport of inertial particles is involved in several fields of science, e.g. droplet

growth in clouds (Falkovich, Fouxon & Stepanov 2002; Shaw 2003), planetary
formations (Bracco et al. 1999) and plankton accumulation in the ocean (Károlyi
et al. 2000). As far as technological applications are concerned, inertial-particle
dynamics are crucial for solid- or liquid-fuelled rockets, injection systems of internal
combustion engines and for sediment accumulation in pipelines (e.g. Rouson & Eaton
2001; Marchioli & Soldati 2002). Inertial particles differ from perfectly Lagrangian
tracers due to inertia which prevents them from following the flow trajectories. The
main effect consists of ‘preferential accumulation’ (see for instance Squires & Eaton
1991; Rouson & Eaton 2001). In homogeneous isotropic conditions it amounts to the
small-scale clustering discussed in a number of recent papers (Balkovsky, Falkovich &
Fouxon 2001; Reade & Collins 2002; Bec et al. 2007).

In presence of inhomogeneity new features emerge, leading to the so-called
turbophoresis, whereby a preferential accumulation of inertial particles develops near
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the boundary in wall-bounded shear flows (Reeks 1983). Under appropriate conditions,
particles may achieve extremely large concentrations at the wall with a substantial
reduction of mobility. This turbulence-induced transport and the issuing preferential
accumulation as been addressed in a number of papers dealing with a variety of
configurations, from boundary layers to planar channels and pipes, attacked from
both the experimental (Kaftori, Hetsroni & Benerjee 1995a , b; Righetti & Romano
2004) and the numerical (Rouson & Eaton 2001; Marchioli & Soldati 2002; Portela,
Cota & Oliemans 2002) side. Though a complete understanding of the phenomenon
is still lacking, the advection of the particles by the coherent motions in the wall
layer is certainly essential, as discussed by Brooke et al. (1992). In other words
the structures responsible for particle accumulation at the wall are the same which
sustain turbulence kinetic energy production in the buffer layer (see also Rouson &
Eaton 2001; Marchioli & Soldati 2002). Turbophoresis and small-scale clustering are
different aspects of the same inertial-particle dynamics. Both phenomena are induced
by non-trivial phase relationships due to quasi-coherent vortical structures. The main
difference is provided by the characteristic scales, associated with the Kolmogorov
time unit τη = η2/ν, where η is the Kolmogorov length and ν the kinematic viscosity, in
one case and with the larger energy-producing time scale in the other. Inhomogeneity
is essential to have spatial segregation. For instance, in the kinetic model presented in
Reeks (1983), the spatial transport of particle concentration presents, beside a Fick-
like gradient-type diffusion component, a contribution associated with the spatial
variations of turbulence intensity. However anisotropy is probably a key ingredient
of the process; see e.g. the preferential direction of the trajectories of particles
approaching the wall (Brooke et al. 1992). The two features are strongly entangled
in wall-bounded flows. A special flow exists however – the homogeneous shear flow
in a confined box – which retains most of the anisotropic dynamics of wall-bounded
flows still preserving, on average, spatial homogeneity.

The flow is bound by a computational box of fixed extension, and its integral scale
grows initially to eventually saturate due to confinement. Target of the analysis is the
statistically steady state with time-independent ensemble averages. Similar features
are found in the the experimental data of Shen & Warhaft (2000). By using an
active grid to generate a flow with integral scale close to the transversal dimension
of the apparatus, the authors were able to achieve confinement from the outset. As a
consequence, the integral scale did not increase downstream (see also the discussion
in Gualtieri et al. 2007).

Our flow shares streamwise vortices with the wall layer and production mechanisms
of turbulent kinetic energy. In the numerical experiment, this corresponds to
pseudo-cyclic fluctuations associated with the regeneration of streamwise vortical
structures.

Velocity fluctuations are strongly anisotropic at the large scales driven by
production, while for smaller separations the classical energy-transfer mechanisms
become effective in inducing re-isotropization. This classical issue (see e.g. Corrsin
1958) has been recently revisited by more complete diagnostic tools (e.g. SO(3)
decomposition of turbulent fluctuations) able to quantify on a scale-by-scale basis the
amount of anisotropy in the carrier fluid, as discussed both experimentally (Warhaft &
Shen 2002; Jacob et al. 2008) and numerically (Casciola et al. 2007); see Biferale &
Procaccia (2005) for a review.

Despite anisotropy of the velocity field now being well understood and the carrier

fluid showing tendency towards isotropy recovery below the shear scale Ls =
√

ε/S3
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with ε the average turbulence kinetic energy dissipation rate per unit mass and
S the average shear rate, the behaviour of particle distributions is still not fully
explored.

Anisotropic transport of inertial particles has been recently addressed by
Shotorban & Balachandar (2006), who analysed numerically the initial transient of
the homogeneous shear flow, i.e. before saturation of the integral scale occurs, with the
purpose of modelling unconfined conditions. The focus was mainly on the comparison
of different particle-dynamics models. However, by considering particle configurations
in orthogonal planes, the authors also discussed the anisotropy of particle clusters,
concluding that particles are the most concentrated in the streamwise direction and
the least concentrated in the cross-stream direction. The same flow was dealt with by
Ahmed & Elghobashi (2000, 2001) and Shotorban, Mashayek & Pandya (2003) to
investigate issues such as turbulence modulation in the two-way coupling regime and
heat transfer induced by the disperse phase.

The purpose of the present paper is the quantitative evaluation of the shear-induced
anisotropy in particle clustering. It is now well known that particles respond to the
fluid velocity fluctuations in a certain range of scales which is determined by their
Stokes time. The relevant parameter is the Stokes number, the ratio of particle
Stokes time and flow time scale. In order to work with well-defined conditions,
one needs a shear flow whose characteristic time and length scales are constant
in time. The best candidate is the statistically steady homogeneous shear flow in
a confined box we have described above. In this flow, below the shear scale, the
velocity fluctuations tend to recover isotropy. The question is then what happens
to particle clusters? Do they become isotropic in the smallest scales? For the given
velocity field, how is the geometry of the clusters affected by the relaxation time of the
particles?

In fact, the main contribution of the present study is the quantitative evidence
that particle distributions do not necessarily reduce their anisotropy at small
scales, despite the isotropy recovery occurring in the velocity field. Rather cluster
anisotropy may even grow below the Kolmogorov length where the velocity field
is smooth and almost isotropic. As a matter of fact, inertia manifests itself in a
rather peculiar and unexpected way and leads, under certain coupling conditions,
to singular particle distributions which viscosity cannot regularize (Bec et al. 2007).
After introducing a suitable observable – the angular distribution function (ADF) –
its spherical decomposition is used to evaluate the relative importance of its
different components. The scaling exponents of the respective singularities show
that, under appropriate conditions, anisotropy is a leading-order effect which may
easily persist down to vanishing separations. The data offer preliminary evidence
of the anisotropic geometry of the fractal support of inertial-particle distributions
under shear flows, thus non-trivially extending results recently achieved for isotropic
transport.

2. Methodology
Concerning the carrier fluid, the velocity field v is decomposed into a mean

flow U = Sx2e1 and a fluctuation u (see figure 1 for notations). Rogallo’s (1981)
technique is employed to rewrite the Navier–Stokes equations for velocity fluctuations
in a deforming coordinate system convected by the mean flow according to the
transformation of variables ξ1 = x1 − Stx2; ξ2 = x2; ξ3 = x3; τ = t . The resulting system
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Figure 1. (a) Sketch of the shear flow and nomenclature: the mean flow U (y), in the x ≡ x1

direction, is a function of y ≡ x2, with z ≡ x3. For a linear mean profile, the shear rate
S =dU/dy is constant. (b) Sketch of the spherical cone of amplitude dΩ in direction r̂ .

is numerically integrated by a pseudo-spectral method combined with a fourth-order
Runge–Kutta scheme for temporal evolution (see Gualtieri et al. 2002).

The two parameters controlling the homogeneous shear flow are the Taylor–
Reynolds number Reλ =

√
5/(νε)〈uαuα〉 and the shear strength S∗ = S〈uαuα〉/ε. For

the simulations discussed below they are Reλ � 100 and S∗ � 7, corresponding to
a ratio of shear to Kolmogorov scale Ls/η � 35. The Navier–Stokes equations are
integrated in a 4π × 2π × 2π periodic box with a resolution of 256 × 256 × 128 Fourier
modes corresponding to 384 × 384 × 192 collocation points in physical space due to
the 3/2 de-aliasing rule. The Kolmogorov scale is η = 0.02 which corresponds to
Kmaxη =3.1, ensuring sufficient resultion at small scales. Actually a well-resolved
velocity field is crucial to minimize numerical errors associated with the interpolation
of the fluid velocity at particle positions which is necessary to advect the particles
in the present mixed Eulerian–Lagrangian formulation (see e.g. Yeung & Pope 1988;
Balachandar & Maxey 1989).

The disperse phase consists of diluted particles with mass density ρp much larger
than that of the carrier fluid ρf , which is assumed small enough to be modelled as
material points. At this dilution self-interactions and the back reaction on the fluid
are negligible, leaving the Stokes drag in the relative motion with the fluid as the only
relevant force on each particle (Maxey & Riley 1983). Accordingly, the equations for
particle position x

p
i (t) and velocity v

p
i (t) read

dx
p
i

dt
= v

p
i ,

dv
p
i

dt
=

1

τp

[
vi(x

p, t) − v
p
i (t)

]
,

⎫⎪⎪⎬
⎪⎪⎭

(2.1)

where vi(x
p, t) is the instantaneous fluid velocity evaluated at x

p
i (t) and

τp = ρpd2
p/(18νρf ) is the Stokes relaxation time (dp denotes the particle diameter).

The particle dynamics are controlled by the ratio of τp to a characteristic flow
time scale, typically the Kolmogorov time scale τη = η2/ν; i.e. the relevant control
parameter is the Stokes number Stη = τp/τη. Particle velocities are decomposed as
v

p
i =Ui[x

p
k (t)] + u

p
i , where u

p
i denotes the particle velocity deviation with respect to
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Figure 2. DNS of particle-laden homogeneous shear flow (Reλ = 60, S∗ = 7, Stη = 1), in a
4π × 2π × 2π computational box with 192 × 192 × 96 collocations points corresponding to
Kmaxη = 3. The disperse phase is computed by using two different schemes to interpolate
the fluid velocity at particle positions, namely linear interpolation (solid line) and quadratic
Lagrange polynomials (symbols). The statistical observables shown in the plots are defined in
§ 3: (a) g00(r), projection of the ADF in the isotropic sector; (b) |g2−2|/g00, normalized most
energetic anisotropic component of the ADF.

the local mean flow of the carrier fluid. Equations (2.1) can be written as

dx
p
i

dt
= u

p
i + Ui(x

p),

du
p
i

dt
=

1

τp

[
ui(x
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p
i (t)

]
− dUi

dt
,

⎫⎪⎪⎬
⎪⎪⎭

(2.2)

to be finally rearranged in Rogallo’s (1981) computational space as (see also
Shotorban & Balachandar 2006):

dξ
p
i

dτ
= u

p
i − Sτu

p

2 δi1,

du
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]
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p
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⎪⎪⎭

(2.3)

The particle equations are integrated by the same fourth-order Runge–Kutta scheme
used for the Navier–Stokes equations, with fluid velocity at particle positions evaluated
by trilinear interpolation. The accuracy of the interpolation scheme may be an issue.
To assess its effect on the numerical results, we have preliminarily run two different
simulations at half the resolution and smaller Reynolds number of the cases to be
discussed in the main body of the paper. The two simulations employ two different
interpolation schemes, namely a linear and a quadratic one. As always in turbulence,
comparisons need to be made in terms of the relevant statistical observables. We
anticipate that here we deal with the different projections of the ADF, to be introduced
in § 3. In figure 2 the solid lines denote results obtained with the linear interpolation
scheme, while the symbols correspond to the quadratic Lagrange polynomials. The
difference cannot be appreciated on the scale of the diagram and is always below the
statistical accuracy of the data.

Starting from an already fully developed fluid velocity field in statistically steady
conditions, five different populations of Np =300 000 particles each, with Stokes
numbers Stη = 0.1, 0.5, 1.0, 5.0, 10.0, are initialized with random and homogeneous
positions and velocities matching that of the local fluid. Samples for particle statistics
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Figure 3. Snapshots of particle positions for increasing Stokes number. From top to bottom,
Stη = 0.1, 1, 10 respectively. Left column: thin slice in the y–z plane; right column: slice in
the x–y plane. The slice thickness is of the order of a few Kolmogorov scales.

corresponding to 120 independent snapshots separated in time by 2S−1 are collected
after an initial transient of 50S−1. Discarding the initial transient is crucial to have
results independent of the rather arbitrary initial state used to initialize the particles.
We observe that, also under this respect, a statistically steady flow is mandatory to
have definite experimental conditions, especially in cases in which the response of
particle populations with different relaxation times are compared.

3. Results and discussion
A visual impression of instantaneous particle configurations is provided in figure 3,

where slices of the domain in selected coordinate planes are displayed for three
different Stokes numbers. The typical particle distribution exhibits many voids,
strongly correlated with high enstrophy (Squires & Eaton 1991; Bec et al. 2007),
intertwined with thin ‘stretched’ regions in which particles concentrate. Clustering is
specially manifest near Stη = 1; see the middle panel of figure 3 in comparison with
top and bottom ones which show more even spreading. The typical void dimension,
as caught by the eye, is larger at our largest Stokes number, Stη = 10. The ballistic
limit, in which particles follow their trajectories with no significant influence from the



Anisotropic clustering of inertial particles 31

fluid and in which the expected spatial distribution is homogeneous, is apparently still
far away. In the opposite extreme case, passive tracers are recovered for vanishing
Stη; particles follow the fluid path; and, again, homogeneity is eventually restored.
In fact, clustering still takes place, though at smaller scales, for the smallest Stokes
number we have considered, consistent with theoretical arguments (Balkovsky et al.
2001; Falkovich et al. 2002) and numerical simulations (Reade & Collins 2002; Bec
et al. 2007) for homogeneous and isotropic turbulence aimed at explaining droplet
growth in clouds.

Despite of the mentioned similarities with isotropic flows, ours manifests specific
features compelled by large-scale anisotropy. The shear-induced orientation is
apparent from the bottom-left/top-right alignment of particle sheets in the shear
plane x–y (see the right panels of figure 3). This behaviour, clearly visible at Stη =1.0,
is still discernible in the other two cases. Since, apparently, the effect is strong
and persistent, we are interested in putting forward suitable tools to evaluate the
anisotropy of clustering. As we shall see, this is best done by extending in due form
a line of analysis proved successful for the isotropic case.

The main statistical tool is the radial distribution function (RDF) of particle pairs
g(r) which is a function of radial distance r (see e.g. Sundaram & Collins 1997
in which the RDF is dealt with for isotropic flows). The RDF, sometimes called
correlation function, is defined as

g(r) =
1

4πr2

dNr

dr

1

n0

, (3.1)

where n0 = 0.5Np(Np − 1)/V0 is the density of pairs in the whole volume V0 and Nr

is the number of pairs in a ball Br of radius r .
The concept is easily extended to anisotropic cases by considering the number of

pairs dμr = νr (r, r̂)dΩ contained in a spherical cone of radius r , with axis along the
direction r̂ and solid angle dΩ (see the sketch in figure 1b). By this definition the
number of pairs in the ball Br is Nr =

∫
Ω

νrdΩ; hence dNr/dr =
∫

Ω
dνr/dr dΩ . We

define the ADF as

g(r, r̂) =
1

r2

dνr

dr

1

n0

, (3.2)

which retains information on the angular dependence of the distribution. The RDF
is the spherical average of the ADF, g(r) = 1/(4π)

∫
Ω

g(r, r̂)dΩ , and it is shown in
figure 4 for a few particle populations.

The behaviour of the RDF near the origin, g(r) ∝ r−α , is related to important
geometrical features of the spatial distribution. Specifically, D2 = 3−α is the so-called
correlation dimension of the multi-fractal measure associated with the particle density
(Grassberger & Procaccia 1983). A positive α indicates the occurrence of small-scale
clustering. Its value is inferred from the slope near the origin in the log–log plots
shown in figure 4; see the scaling behaviour apparent in the range r/η ∈ [.1 : 1].
From the figure, particles with Stη ∼ 1 exhibit maximum accumulation; i.e. the RDF
diverges at a faster rate as r is decreased (see also Shotorban & Balachandar 2006).
The solid lines superimposed on the present data correspond to the scaling laws
extracted at matching Stokes number by Bec et al. (2007) in isotropic conditions. The
agreement between our data and the isotropic ones is remarkable, showing that, even
under strong shear, certain features of the clustering process may be universal.

Small-scale clustering is not shared by the heaviest particles. They show instead
the saturation of the correlation function to a constant value g(r) � g∗ > 1 below a
critical scale �c; see e.g. the open squares in figure 4 with α � 0. This means that
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Figure 4. RDF versus separation, for different Stokes numbers.

the number of pairs below �c is proportional to volume with an effective density
n∗ = g∗n0 larger than its overall mean value n0. By the inspection of figure 4, for the
heaviest particles (squares), it is understood that the saturation occurs at �c � 10η.
The interpretation is that eddies with a time scale sufficiently smaller than particle
Stokes time do not influence the clustering process. The saturation scale should then
correspond to the size �min of the smallest eddies able to aggregate particles. As
an order of magnitude estimate, our data are consistent with the results given by
Yoshimoto & Goto (2007) for the inertial range of isotropic turbulence, where the
authors found �min/η = (Stη/βmin)

3/2 with βmin � 2. Our data match this estimate also
for the run at Stη = 5, where the saturation occurs close to the Kolmogorov scale.
For lighter particles, clustering keeps on going below the Kolmogorov length, and
its lower limit cannot be interpreted by arguments which, tuned by experiment, are
nevertheless taken from inertial range theory.

Concerning the large-scale behaviour, heavier particles apparently begin to show
accumulation at larger scales. Each population is uniform with g(r) � 1 at very
large r . This trend is followed by the lightest particles down to 5η below which
they begin to follow the power law. The RDF starts deviating from the uniform
distribution – g(r) � 1 – at a scale �max which increases monotonically with the Stokes
number; see. e.g. the range r/η ∈ [20 : 80]. This is consistent with intuition, since
particle Stokes time progressively matches the eddy-turnover time of larger turbulent
eddies. The data again agree reasonably well with the results of Yoshimoto &
Goto (2007), which identify the range of time scales relevant to clustering as
βmax < τp/τ (�) < βmin, where τ (�) ∝ ε−1/3�2/3 is the eddy-turnover time at scale �.
In terms of lengths, clustering starts to occur at min (�0, �max), where �0 is the integral
scale and �max/η = (Stη/βmax)

3/2 (βmax � 0.1). Using this estimate, our heaviest particles
are expected to begin accumulating at the integral scale �0/η � 135, while, e.g., the
lightest ones accumulate at �max/η � 1, which is not too far from the value 5η we
infer from the plot.



Anisotropic clustering of inertial particles 33

y

z

x

1.15
1.10
1.05
1.00
0.95
0.90
0.85

Figure 5. Top panels: ADF giving the probability per unit solid angle to find a couple of
particle at fixed distance |r|. Left panel: ADF computed at separation 4η; right panel: ADF
computed at separation 35η. Data for Stη = 1. Bottom panels: estimate of ADF by using only
the isotropic sector and the j = 2 sector.

The RDF quantitatively confirms the overall impression gained from the
visualizations of figure 3. The strong anisotropy apparent in those plots, however,
needs a description in terms of the more complete ADF shown in figure 5 as a contour
plot on the unit sphere for two separations r and particles with Stη = 1. The ADF has
been normalized with its average on the unit sphere, g(r), in order to compare the
relative anisotropy content of different scales. From figure 5, as separation decreases
(i.e. moving from the right, r = 35η, to the left panel, r = 4η), the normalized ADF
exhibits preferential clustering in directions consistent with those observed in the
visualizations of figure 3.

The ADF allows for a systematic evaluation of anisotropy in particle clustering. For
the given separation r , its angular dependence can be resolved in terms of spherical
harmonics,

g(r, r̂) =

∞∑
j=0

j∑
m=−j

gjm(r) Yjm(r̂). (3.3)

In this notation, the classical RDF, g(r), is the projection of the ADF on the isotropic
sector j = 0, namely

g00(r) ≡ g(r) =

∫
Ω

g(r, r̂) Y00(r̂) dΩ. (3.4)

This decomposition amounts in projecting our function on orthogonal subspaces
invariant under rotations. Each subspace is labelled by the index j , and it is
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Figure 6. Projection of ADF on the different anisotropic sectors of spherical harmonics
normalized by the projection of the isotropic sector (RDF) as a function of separation. Data
for Stη = 1.

spanned by 2j + 1 base elements Yjm. Growing levels of anisotropy are checked by
increasing j , consistent with its geometrical meaning as the number of zero crossings
of Yjm.

Figure 6 shows the normalized projections on sectors j = 2, 4, 6, i.e. the normalized
amplitudes gjm/g00, for the particle population with Stη = 1. For the given j most
modes are negligible, and the figure reports only those with significant signal level. The
(2, −2) mode provides the most significant contribution to the anisotropic component
of g(r, r̂). The corresponding spherical harmonic Y2−2 roughly selects the intensity
of the signal along the principal direction of the mean deformation tensor which
corresponds to maximum straining and is inclined 45◦ in the mean flow plane; Y2−2

is negative in the first and third quadrants and positive in the others, thus explaining
the negative sign of g2−2 in figure 6. This description well captures the alignment of
most thin particle clusters observed in the mid panel of figure 3.

The signal content rapidly decreases with the order of the sector j , and the ADF is
satisfactorily reconstructed – see decomposition (3.3) – using only the first few sectors
with j � 2 as shown in bottom panels of figure 5. We conclude that the probability of
finding two particles at separation r = 4η along the main straining direction is 30 %
higher than in the perpendicular direction in the mean flow plane.

As discussed, the ADF provides a quantitative account of the anisotropy induced
by the fluid velocity field on the disperse phase. As shown below, it can be effectively
used to parameterize the level of anisotropy through the scales in terms of the Stokes
number.

The plot of figure 7 gives the normalized amplitude of the most energetic
anisotropic mode in absolute value – |g2−2|/g00 – for our set of Stokes numbers
Stη = 10, 5, 1, 0.5, 0.1, ranging from heavy to light particles. Focusing on the heaviest
particles, Stη = 10, 5, the relative amplitude of the strongest anisotropic mode first
increases towards the small scales to reach a maximum at r ∼ �c. Below this scale
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Figure 7. Ratio between the most energetic anisotropic sector (2, −2) normalized by
isotropic sector as a function of separation for different Stokes number.

the anisotropy level decreases, until the very small scales become essentially isotropic.
Connecting this result with the previous discussion concerning the saturation of the
RDF g00, we conclude that the heaviest particles show a regular concentration at
scales smaller than �c, where the distribution recovers isotropy.

Particles with smaller Stokes numbers behave in an entirely different way. The
anisotropy, as measured by the ratio g2−2/g00, substantially increases to saturate at
small scales close to Kolmogorov length. It keeps an almost constant value below η.
In other words, the clustering process maintains its anisotropic features even below
the dissipative scale for particles with sufficiently small Stokes numbers. Remember
that the overall clustering process described by g00 is here characterized by a singular
exponent α. The saturation observed on the ratio g2−2/g00 implies that the dominating
anisotropic contribution inherits the same behaviour, g2−2 ∝ r−α .

4. Final comments
We have provided evidence that large-scale shear induces preferential orientation

on the patterns a disperse phase of small inertial particles forms in turbulence. The
effect is indirect: the shear imprints anisotropy on velocity fluctuations which, in turn,
arrange particle configurations in directionally biased clusters.

Recently it became increasingly clear that the multi-scale nature of the velocity
field is crucial in explaining most features of particle distributions. Typically, a
range of eddies exists able to break spatial homogeneity of particle configurations.
The particles segregate, and their pattern shows local concentrations and voids on
length scales correlated with those of the inducing eddies. The range of scales of the
inducing eddies is determined by the Stokes time of the particles and moves from
integral down to Kolmogorov length with reduction in the relaxation time. For light
particles, clustering reaches down Kolmogorov scale, leading to a singularity in the
RDF. The exponent of the singularity is a measure of its intensity. All these features,
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originally found in experiments and numerical simulations of isotropic turbulence, are
also present in our anisotropic fields. They are thus generic aspects of the clustering
process which seem independent of the specific geometry of the forcing.

At a qualitative level, the specific characteristics of clustering under anisotropic
advection consists of preferential orientation of the particle patterns. In order to
quantify the new scale-dependent features added by the non-trivial geometry of
the forcing, we have introduced the concept of ADF. It can be understood as
a generalization of the previous RDF, to which it reduces by averaging on the
unit sphere, i.e. by performing the isotropic projection. This quantitative tool has
led to our most unexpected finding: the advecting field anisotropy, known to be
confined to the large scales, affects the singular, small-scale, clustering process. In
fact, anisotropy results in a strong directionality of the probability to find a couple
of particles at viscous-scale separation, with 30 % variations on the solid angle easily
observed.

Technically, for Stokes number of the order of unity, the anisotropic component
of the ADF diverges at small scales with singularity exponent comparable to
that found in the isotropic projection (RDF). For very small Stokes number, we
cannot even exclude that the singularity exponent of the strongest anisotropic
sector may even exceed that of the RDF. Conversely, heavy particles appear to
preferentially concentrate on finite-sized patches endowed with a range of multi-scale
and shear-oriented features, with the finest scales more or less evenly and isotropically
distributed.

The geometrical properties of patterns of inertial particles differ considerably from
those one could naively guess from velocity fluctuations. Recent findings, extending
somehow a number of previous results on shear-induced anisotropy (Uberoi 1957;
Corrsin 1958; George & Hussein 1991; Antonia & Kim 1994; Warhaft & Shen 2002),
show that velocity fluctuations manifest two neatly distinct ranges, one dominated by
the production of turbulence kinetic energy above the shear scale Ls and the other
corresponding to the classical inertial range of Kolmogorov theory below. In the two
ranges, velocity fluctuations display different isotropy recovery rates, a smaller one
in the production range, a larger one in the inertial transfer range between Ls and
the viscous scale η (Casciola et al. 2007; Jacob et al. 2008). Actually, concerning
the velocity field, isotropy is always recovered at dissipative scales, provided the scale
separation Ls/η is large enough; i.e. the local Reynolds number (the Taylor–Reynolds
number or equivalently for wall-bounded flows the wall-normal distance in inner units
y+ = y

√
τw/ρ/ν, with τw the wall shear stress) is sufficiently large. This condition is

violated in an essential way only very close to solid walls in wall-bounded turbulence
(small y+).

The anisotropy in the particle configurations depends strongly on the properties of
the advecting velocity field. However, despite of the isotropy recovery of the velocity
field, isotropy may never be recovered in the small scales of the clusters, as it happens
at small Stokes number. Actually, in the range from Ls to η clustering of light inertial
particles shows a substantial increase of directionality.

From our results at moderate Reynolds number one can conjecture the behaviour of
the clusters at high Reynolds numbers. In principle the intermittency of the turbulent
field may induce a dependence on the Reynolds number. In fact, as shown in Bec
et al. (2007) for isotropic flows, the fractal properties of particle distributions depend
at most weakly on the Reynolds number and strongly on the Stokes number. For the
given geometry of the external forcing, i.e. fixing the integral and the shear scale, and
at given particle Stokes time, the increase in the Reynolds number corresponds to
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increase in the Stokes number based on the Kolmogorov time, Stη. Given the weak
dependence on the Reynolds number, this is somehow equivalent to reading figures 4
and 7 by successively moving from light to heavy particles. Along the process, we
infer the saturation at small scales of the RDF (Stη � 1, figure 4) and the small-scale
isotropy of the clusters (figure 7). Clustering is confined to the intermediate scales
in which it shows high levels of anisotropy. This means that, in the limit of large
Reynolds number, any particle population should be organized in anisotropic finite-
sized patches which are eventually uniform and isotropic in their finest scales. We
stress once more that an intermediate range of scales always exists, however, where
a multi-scale aggregation process takes place with a substantial directionality of the
clusters.

On the other hand, at finite Reynolds number, sufficiently small particles – small
relaxation time – will always show small-scale clustering, in the sense of a singularity
in the RDF. In this case anisotropy may persist below Kolmogorov scale, as described
by the ADF at small separations for the lightest populations in our simulations. This
finite-Reynolds-number effect becomes extremely important in the near-wall region
of turbulent wall-bounded flows, where the local Reynolds number constructed with
the distance from the wall is not huge, and the velocity field is meanwhile strongly
anisotropic.

The issuing anisotropy of the fine scales of particle clusters will then have a
significant impact on the phenomena of collision, aggregation of dusts into larger
particles and evaporation/condensation rate of droplets in pipelines and a number
of other physically and technologically significant contexts.

A final comment concerns the extension of the present results to the near-
wall region of wall-bounded flows. As shown by recent results on the scale-
by-scale statistics of the velocity field, e.g. energy transfer across scales, spectral
distribution of turbulence kinetic energy production, intermittency and anisotropy,
the homogeneous shear flow reproduces the essential features observed in the
wall region, despite significant differences in the large-scale geometry of the two
systems. However, particles in the wall region are strongly affected by turbophoresis
which is a predominant effect associated with inhomogeneity. In wall flows particle
segregation is controlled by the two concurrent processes of small-scale anisotropic
clustering and of accumulation at the wall. Clearly, the focus of the present paper
is on the former one, leaving the combined analysis of the two effects for future
investigations.
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